Tag: IIAR

Ammonia Process Safety below 10,000 pounds

One of the most frequent misconceptions we’ve been dealing with in our industry is a belief that being below the PSM/RMP threshold means you are in some sort of wild-west no-man’s-land where there are no rules. Previously we’ve dealt with that issue in a post called “General Duty vs. PSM/RMP: Is there a benefit to dropping below the 10,000lb threshold?” But that post was really written to people that were considering lowering their NH3 inventory to avoid regulation.

We thought it would be useful to put together an article that dealt with those systems that were already under the PSM/RMP threshold so they better understood the Safety & Regulatory landscape. To that end, we’ve put the information in a executive level 3-page pdf that is easy to email: Ammonia Process Safety below 10k

Email or call us today to have RC&E assist you with all your PSM/RM Program needs! [email protected]    (888) 357-COOL (2665)

Updated IIAR 2-2021 Standard Released

IIAR 2 – 2021 Standard for Design of Safe Closed-Circuit Ammonia Refrigeration Systems has been released by the IIAR and is now available for purchase on their website

The updated standard has several new requirements which resulted in some changes in the PSM/RMP program templates. Here are some of the highlights:

  1. The definitions file was updated with new IIAR 2 definitions. Added in-document headings to skip around the document easily.
  2. The PHA Checklist Template was updated to the new IIAR 2:
    • Added a note that “Provisions for plugs or caps required under IIAR 2 5.9.3.3” on all oil draining plug/cap questions.
    • Added a note that “IIAR 2-2021 5.12.2 requires a check valve during charging” in relevant Charging SOP section.
    • Added a question on Provisions for Pumpout per IIAR 2-2021 5.12.6 on PV1 subsection and all Equipment Subsections.
    • Added/Modified questions on RC1 section about low ambient temperature, and VFD resonance.
    • Added a question on EV2 (Liquid Heat Exchanger) equipment subsection regarding secondary coolant side pressure ratings.
    • Added a question on MR.C Checklist for Classified Space signage.
    • Added a question on PV1 (Piping & Valves) on new MOPD & MSSPD requirements for valves leading to atmosphere.
    • Added a question on PV1 (Piping & Valves) on requirements for unique identification for Emergency Shutoff valves.
    • Modified existing .PSV equipment sub-subsections to include IIAR 2 2021 15.2.6 requirement that liquid relieving reliefs relieve back into the system.
    • Added a note that IIAR 2 2021 13.2.3.1.1 limits carbon steel tubing and carbon steel compression fittings to valve sensing pilots, compressors, compressor packages, and packaged systems to all small-bore piping / tubing questions.
    • Updated MR.C section for new requirements regarding NH3 detection.
    • Updated various checklists (VENT, DET, PSV, DT) to match current IIAR 2-2021 text.
    • Added a new equipment subsection NMR.C for IIAR 2 Equipment located outside of Machinery rooms.
    • Added a new equipment subsection PKG.C for IIAR 2 Packaged Systems and Equipment.
    • Added a new equipment subsection IAC.C for IIAR 2 Instrumentation Controls.
  3. Updated “Contractor Door Sign” to meet new IIAR 2 – 2021 [5.14.1.1] information standards and some ASHRAE 15 – 2019 [11.2.1] standards.

Comments about the changes and the required steps to implement the document changes are present in the “Change Log and Reference” document at 08/02/21.

…Read on further in this post if you want to know about the changes in the new IIAR 2…

 

Continue reading

PHA Synergy: How to get more out of the PHA process

According to 1910.119(e) and 40CFR68.67(a) the purpose of a PHA is to “…identify, evaluate, and control the hazards involved in the process.” Since the mid-90’s the refrigeration industry has done this mainly through the IIAR’s “What-If” methodology as suggested in their Compliance Guidelines materials.

There have been many revisions of this material over the years, but they all have the same thing in common as you use them: You can see how each question / item:

  • Poses a failure scenario (sort of a lesson someone else has already learned)
  • Prods you to solve the issue through an existing RAGAGEP

For example, a question might ask something like “What if plugs, caps, or blind flanges are missing on purge or drain valves?” This should prod you to recall that both IIAR 2 and IIAR 4 require that these things be plugged, capped, etc. This should also prod you to ask how you are addressing this requirement in your Process Safety Program.

The issue we always came across is that you must KNOW or MEMORIZE what the RAGAGEP says in a very complete way, or you miss the connection between the “What If” scenario and the RAGAGEP. This is nearly impossible because it seems like RAGAGEP is multiplying at an alarming rate. Furthermore, this (at least two day) process often feels like a futile effort at figuring out what the “What-If” scenario questions are really getting at.

To improve this years ago, I started adding two things to the IIAR standard questions:

  1. References to the IIAR standards where appropriate. (For example, in our plug question, reference IIAR 2-2021 13.3.2.6 & IIAR 4-2020 10.4.5.4)
  2. Explicit checklists that allow you to compare your system to appropriate RAGAGEP outside of the “What If” scenarios.

 

It’s very easy to lose sight of evolving RAGAGEP over time. These checklists allow you to perform a forensic examination of your system compared to current RAGAGEP. In addition to the issue of improving RAGAGEP compliance, we also face other challenges.

  1. It is common to show up to perform a PHA and find the client lacks critical Process Safety Information and PSM elements & procedures making a compliant PHA extremely difficult or impossible.
  2. Incident Investigations are often in a state of disarray or incomplete making their inclusion in the PHA difficult at best, and almost meaningless at worst.
  3. IIAR 9 now requires an evaluation against its minimum requirements for all NH3 refrigeration systems at least every five years.
  4. In some regions the EPA has an almost absurd number of questions they “like” to see in your Facility Siting sections.
  5. The Emergency Action Plan is a critical safeguard in your program, and it is usually missing some basic items that aren’t apparent until you try and use it in an emergency.
  6. Finally, the IIAR has standards on Installation, Commissioning, and Decommissioning that are often overlooked.

 

This again leads us back to checklists. I created them for basic PSI & PSM items, Incident Investigations, IIAR 9, Facility Siting, EAP, IIAR 4, IIAR 6, and IIAR 8. Here’s what that looks like:

As you can see, that’s fairly comprehensive, but it’s also a lot more work! To adjust to all this, we usually perform PHA’s in a two-step process.

Step 1: Weeks in advance, we give the client the relevant checklists and have them fill them out to the best of their ability.

Step 2*: Once we’re on-site, we go over the checklists they’ve worked on to answer any questions, address discrepancies, etc. THEN we move on to the “What If” scenarios.

* Of course, if the client wants, we can always book another two or three days of our time helping them on-site with Step 1.

 

The result of this longer, more comprehensive process is:

  • A nearly point-by-point check of the facility (and their Process Safety program) against common RAGAGEP from a HAZARD perspective rather than a compliance one.
  • A much better understanding of the “What If” scenario questions when we get to them after the checklists.
  • Cleaner, more systemic recommendations that point to specific hazards and the RAGAGEP that most effectively addresses them.
  • At the end of the PHA process, facility team members have a much clearer understanding of where the requirements and recommendations are coming from.

You can learn more about our PHA offerings here. Email or call us today to have RC&E assist you with all your PSM/RM Program needs! [email protected]    (888) 357-COOL (2665)

The 2020 Christmas Update

Merry Christmas to our Ammonia Refrigeration Process Safety community!

 

Well, this year has been interesting, eh? The hits keep coming it seems, and it was no different to those of us in the Process Safety field. Behind the scenes, we’ve been working on a fairly major set of improvements to the PSM system. Originally scheduled for August, we’ve finally managed to push it across the finish line just in time for the Holidays!

Significant improvements were made to the core of the system (The SOPs and ITPMRs) through an unprecedented amount of end-user feedback. Remember, this system relies on the feedback of operators, technicians, service personnel, and Process Safety professionals to improve.

All updated documents have the 122520 date-code, but here’s a run-down:

  • Minor updates to definitions file
  • All element written plans:
    • Where it was appropriate, did a little harmonization with the newest IIAR Process Safety Management & Risk Management Program templates. (There isn’t really anything they cover we don’t, but there are some places we harmonized the phrasing where we cover the same ground)
    • Ensured all element Written Plans refer to the ROSOP QA – Document Quality Control section in the Document Management
    • Minor editing / formatting improvements
  • Minor change to Operator Training element to ensure that Initial Training on Incident Investigation includes a review of recent and routinely recurring incidents.
  • Improvements to the II element written plan’s “Incident Investigation Process Flowchart”
  • SOPs
    • Minor changes to the Implementation Policy: Review and Annual Certification to harmonize with the IIAR guidance
    • Annual SOP Certification letter improved to correlate with the SOP element Written Plan more closely
    • The SOP element Written Plan Implementation Policy: SOP Authoring / Generation section now provides “Best Practices” standard language for warnings, step comments, step instructions, etc.
    • ALL SOP Templates now:
      • Use the “Best Practices” language.
      • Include better language tying them to the ITPMRs
      • Reference ROSOP-PPE in the Safety considerations section
      • Additional Equipment Considerations added to harmonize with the IIAR guidance
    • ROSOP PPE slightly improved with reference to LEO
    • ROSOP LOTO improved with improved language from end-users
    • Minor updates to ROSOP QA – Document Quality Control section.
    • ROSOP LEO streamlined and simplified with a good amount of end-user feedback
    • New ROSOP ITPM based on significant end-user operator input and feedback (See MI section below)
  • MI / ITPMRs
    • All ITPMRs now provided as PDF forms as well as Word documents
    • All ITPMRs have improved references including to the new ROSOP ITPM
    • All ITPMRs now have a space to record task hours
    • All frequency ITPMRs are now in a single document. For example, previously we would have a 30-day, 90-day, and 365-day ITPMR for condensers. Now we have a single ITPMR for condensers with all the items and you simply use the applicable sections. This allowed each step in the ITPMRs to have its own unique step code. This is important because….
    • A new SOP was created called ROSOP ITPM which includes additional information for less-skilled operators and technicians. This new ROSOP also is used as a repository of best-practices and collected knowledge from field operators. Relevant guidance from applicable IIAR standards was also included directly in the SOP where we thought it useful to those performing the MI work. A group of contractor service technicians and end-user operators contributed to the creation of this SOP and We FULLY expect this SOP to grow and improve as we get even more field use and operator feedback.

 

To implement:

  • Written Plans: Follow the Implementation Policy: Managing Procedure / Document Changes. These should be straight-forward.
  • Definitions file: Replace with the new one
    1. For the new PPE and LOTO templates, either adopt them as-is or incorporate their changes to your existing PPE & LEO SOPs
    2. For all your equipment SOPs, consider updating them to the new language during your next scheduled revision / team review.
    3. For the NEW ROSOP-ITPM and PSSRs see the MI section below
  • MI: Replace the existing ITPMRs with the new ones, providing training that when the CMMS (or other scheduling system) calls for a frequency based ITPMR, just use the equipment specific ITPMR and fill it out to the appropriate frequency.
  • Provide training on the new ROSOP ITPM. Please collect feedback for improvements so we can all improve its performance.

Updated IIAR 4-2020 and IIAR 8-2020 standards released

IIAR 4-2020 Installation of Closed-Circuit Ammonia Refrigeration Systems and IIAR 8-2020 Decommissioning of Closed-Circuit Ammonia Refrigeration Systems have been released by the IIAR and are now available for purchase on their website. IIAR 8 didn’t change much, but this was a very significant change to the existing IIAR 4 standard.

In SHORT, here’s what you need to know as an end-user:

  1. For current/future projects that involve the installation, startup, and commissioning of new equipment, use the “IIAR 4 APP-B Checklist Tracking Log Template” to manage adherence to IIAR 4 before, during, and after the installation. Once this tracking log has been completed, you can document the final status in the PHA .ISC.APPB section of the related project PHA. (The tracking log is in \PHA\PHA Study Template\Optional Resources\)
  2. Ensure future PHA’s (including project PHA’s) comply with the requirements of IIAR 4 by using the existing equipment specific .ISC section and the new .ISC.C checklist section.

 

The long version follows…
Continue reading

IIAR 2 202x Public Review 1

The IIAR has released a proposed draft of IIAR 2 Safety Standard for Design of Closed-Circuit Ammonia Refrigeration Systems for public review. Here’s the notice:

March 20th, 2020

To:

IIAR Members

Re:

First (1st) Public Review of Standard BSR/IIAR 2-202x, Safety Standard for Design of Closed-Circuit Ammonia Refrigeration Systems.

A first (1st) public review of draft standard BSR/IIAR 2-202x, Safety Standard for Design of Closed-Circuit Ammonia Refrigeration Systems is now open. The International Institute of Ammonia Refrigeration (IIAR) invites you to make comments on the draft standard. Substantive changes resulting from this public review will also be provided for comment in a future public review if necessary.

BSR/IIAR 2-202x specifies the minimum safety criteria for design of closed-circuit ammonia refrigeration systems. It presupposes that the persons who use the document have a working knowledge of the functionality of ammonia refrigerating system(s) and basic ammonia refrigerating practices and principles. This standard is intended for those who develop, define, implement and/or review the design of ammonia refrigeration systems. This standard shall apply only to closed-circuit refrigeration systems utilizing ammonia as the refrigerant. It is not intended to supplant existing safety codes (e.g., model mechanical or fire codes) where provisions in these may take precedence.

IIAR has designated the revised standard as BSR/IIAR 2-202x. Upon approval by the ANSI Board of Standards Review, the standard will receive a different name that reflects this approval date.

We invite you to participate in the first (1st) public review of BSR/IIAR 2-202x. IIAR will use the American National Standards Institute (ANSI) procedures to develop evidence of consensus among affected parties. ANSI’s role in the revision process is to establish and enforce standards of openness, balance, due process and harmonization with other American and International Standards. IIAR is the ANSI-accredited standards developer for BSR/IIAR 2-202x, and is responsible for the technical content of the standard.

This site includes links to the following attachments:

The 45-day public review period will be from March 20th, 2020 to May 4th, 2020. Comments are due no later than May 4th, 2020.

Thank you for your interest in the public review of BSR/IIAR 2-202x, Safety Standard for Design of Closed-Circuit Ammonia Refrigeration Systems.

There are MANY proposed changes. I’ll include a full list of the proposed changes at the end of the post, but here are some highlights:

  • Requirements for System Signage became a little simpler
  • Ammonia detection requirements have changed
    • Most installations now need two detectors in a machine room
    • Installation & Testing for detectors outside machine rooms now refer to external RAGAGEPs.
    • “Level 1” detection now requires liquid & hot gas shutoff at 150ppm
    • Requires AHJ approval if not installing ammonia detection in “Areas Other than Machinery Rooms”
  • New requirements for permanently installed Hoses and Corrugated Metal Fittings to ensure they meet ISO 10380 or ARPM IP-14

 

It’s important that YOU read these changes and make your voice heard if you have any input on them. 

 

Full change list of the normative sections of the standard below…


Continue reading

RAGAGEP Deficiencies and building a defensible case for an alternative solution

This issue: During a PHA, the facility is using an IIAR 2-2014a checklist and finds that the installation does not meet the requirements of section 6.14.3.3.

6.14.3.3 *Machinery room exhaust shall be to the outdoors not less than 20 ft (6 m) from a property line or openings into buildings.

The distance from the machinery room emergency exhaust outlets on the roof to a rooftop door leading into the building is approximately 8 feet. This is a 1910.119(j)(5) deficiency and a 1910.119(d)(3)(iii) RAGAGEP violation. They have a recommendation to address the issue.

Let’s think about the implications of this issue.

 

The Analysis: If there was an ammonia leak in the machinery room that activated the emergency ventilation, then the fans would exhaust on the roof very close to this door. In PHA terms, this could be thought of as a “siting” issue.

This situation is pretty rare: only technicians are allowed on the roof, and they are only up there for routine inspections and maintenance. Still, there are two ways the technician could be exposed to this hazard. If they used the door to:

  1. Access the building’s internal stairway from the roof.
  2. Access the roof from the building’s internal stairway.

For situation #1, a release would be easily observed / heard while on the roof in the area of the ventilation fans. There are also other entrances back into the building, including external stairs to the ground level. The team decided this situation was acceptable without any changes.

For situation #2, it would be possible (although not likely due to the noise of the fans) that someone could use the door to access the roof without knowing that they could be exposed to a release on the other side of the door. The team decided this was an unlikely, but possible issue. That is – it’s an unlikely turn of events that a release in the machinery room would occur at the same time as someone would be using the door – but it was possible so it should be addressed.

Obviously, the cleanest solution would be to move either the door or the fans, but that’s not an easy thing to do! Also, it would be a very expensive fix for an issue with such a low probability of occurrence.

The team brainstormed a bit and came up with an alternative plan to address the issue.

 

The chosen Solution: First, there are only two ways the fans could be exhausting a large amount of NH3 vapor. Either they would me manually operated due to maintenance / leaks or they would be automatically operated due to the IIAR 2-2014a 6.14.7.2.1 required NH3 detection interlock. Either way, a RUN signal is sent to the fan controls and the team decided to install a visual alarm on both sides of the door and use this RUN signal to activate it. Coupled with proper signage and training, the team believes the alarm would provide adequate warning to anyone approaching the door that the emergency ventilation system was running and that the door should not be used.

The team believes this is a defensible solution to non-compliance with IIAR 2-2014a 6.14.3.3. I tend to agree with them – it’s defensible if imperfect.

Perhaps another, actually compliant solution, would be to install ductwork on top of the emergency exhaust fans to raise the exhaust point so the distance from them to the door would meet the 20-foot requirement. Of course, such a change would require a new ventilation calculation to ensure the additional restriction caused by the duct work didn’t pose a problem. This ducting solution would likely be a bit expensive and that could mean that it would take some time to implement. If this duct solution was chosen,  the earlier “alarm” idea would be an excellent interim measure until approval and construction of the ducting project occured.

Note: This 20’ requirement appears to show up first in IIAR 2-2008a effective August 2010. Previously the requirement was a vaguer “13.2.3.11 The discharge of air shall be to the atmosphere in such a manner as to not cause inconvenience or danger.”

IIAR 2 2014 Addendum A

The IIAR has just released IIAR 2-2014 Addendum A:

  • While there isn’t a whole lot that’s changed in the document (compared to IIAR 2-2014) quite a bit of it was re-numbered / re-organized. Based on my review, there’s not too much going on in the new edition:
  • Inclusion of absorption systems
  • Water % allowed in NH3 became more reasonable
  • Significant change to the wording concerning the “corrosion allowance” for vessels such that it is optional now
  • Some equipment hydrostatic protection now points to the “Mechanical Code” rather than the IIAR 2 section 15.6
  • A clearer requirement for pumpout provisions for all equipment
  • Minor clarifications and reorganizations.

I’ve already updated the PHA checklist blanks (and my internal compliance audit template) to reflect the new RAGAGEP.

Here’s my list of changes (which may not be complete) if you are interested in this sort of thing!

 

Section Requirement in IIAR 2-2014 Requirement in IIAR 2-2014a
1.2 Scope *Scope. Stationary closed-circuit refrigeration systems utilizing ammonia as the refrigerant shall

comply with this standard. This standard shall not apply to

1.      Ammonia absorption refrigeration systems.

2.      Replacements of machinery, equipment, or piping with functional equivalents.

3.      Equipment and systems and the buildings or facilities in which they are installed that existed prior to the legal effective date of this standard. Such equipment, systems, and buildings and facilities shall be maintained in accordance with the regulations that applied at the time of installation or construction.

*Scope. Stationary closed-circuit vapor compression and absorption refrigeration systems utilizing anhydrous ammonia as the refrigerant shall comply with this standard. This standard shall not apply to:

1.      Replacement of machinery, equipment, or piping with functional equivalents.

2.      Equipment and systems and the buildings or facilities in which they are installed that existed prior to the legal effective date of this standard. Such equipment. Systems, and building and facilities shall be maintained in accordance with the regulations that applied at the time of installation or construction.

 

Note: Absorption systems added to appendix

4.2 Permissible Equipment Locations 4.2.1 Listed Equipment. Listed equipment containing not more than 6.6 lb (3 kg) of ammonia and

installed in accordance with the listing and the manufacturer’s instructions shall be permitted in any occupancy without a machinery room.

4.2.1 Listed Equipment. Listed equipment containing not more than 6.6 lbs (3 kg) of ammonia and installed in accordance with the listing and the manufacturer’s instructions shall be permitted in any occupancy without a machinery room. Listed equipment for use in laboratories with more than 100 ft2 (9.3m2) of floor area is permitted to contain any amount of ammonia if the equipment is installed in accordance with the listing and the manufacturer’s installation instructions.
4.2 Permissible Equipment Locations 4.2.2. *Outdoor Installations. Ammonia refrigeration machinery shall be permitted to be installed outdoors. Ammonia refrigeration machinery, other than piping, installed outdoors shall be located not less than 20 ft from building openings, except for openings to a machinery room or openings to an industrial occupancy complying with Section 7.2. 4.2.2 *Outdoor Installations. Ammonia refrigeration machinery shall be permitted to be installed outdoors when installed in compliance with sections 7.2.2, 7.2.4, 7.2.6, 7.2.7 and 7.2.8. Ammonia refrigeration machinery, other than piping, installed outdoors shall be located not less than 20 ft. from building openings, except for openings to a machinery room or openings to an industrial occupancy complying with Section 7.2.

 

EXCEPTIONS:

1.      Packaged absorption systems for residential and commercial occupancies with refrigerant quantities not exceeding 22 lbs. (10 kg.) are permitted to be installed within 20 ft. of building openings.

2.      Packaged vapor compression systems for commercial occupancies with refrigerant quantities not exceeding 22 lbs. (10 kg.) are permitted to be installed within 20 ft. of building openings.

3.      Packaged absorption or vapor compression systems with refrigerant quantities such that a complete discharge would not exceed a concentration of 300 ppm in any room or area in which the refrigerant could enter. The calculation procedure shall be in accordance with Chapter 5, Section 5.3.

4.2 Permissible Equipment Locations No Exceptions Listed 4.2.4 EXCEPTIONS:

1.      Listed packaged vapor compression or absorption systems, with no refrigerant containing parts that are joined in the field by other than mating valves that permit sections of the system to be joined before opening the valves, installed in areas or rooms that are not public hallways or lobbies and with refrigerant quantities equal to or less than 6.6 lbs. (3 kg) are permitted for residential occupancies.

2.      Listed packaged vapor compression or absorption systems, with no refrigerant containing parts that are joined in the field by other than mating valves that permit sections of the system to be joined before opening the valves, installed in areas or rooms that are not public hallways or lobbies and with refrigerant quantities equal to or less than 22 lbs. (10 kg) are permitted for commercial occupancies.

3.      Listed, sealed packaged vapor compression or absorption systems with no refrigerant containing parts that are joined in the field by other than mating valves that permit sections of the system to be joined before opening the valves, installed in public hallways or lobbies and with refrigerant quantities equal to or less than 3.3 lbs. (1.5 kg) are permitted for residential and commercial occupancies.

5.2 Anhydrous Ammonia Specifications Table 5.2.2 Purity Requirements

Ammonia Content 99.95% minimum

Non-Basic Gas in Vapor Phase 25 ppm maximum

Non-Basic Gas in Liquid Phase 10 ppm maximum

Water 33 ppm maximum

Oil (as soluble in petroleum ether) 2 ppm maximum

Salt (calculated as NaCl) None

Pyridine, Hydrogen Sulfide, Naphthalene None

Table 5.2.2 Purity Requirements

Ammonia Content 99.95% minimum

Water 50 ppm minimum, 5000ppm maximum

Oil 50 ppm maximum

Salt None

Pyridine, Hydrogen Sulfide, Naphthalene None

5.5 System Design Pressure Note: This item was not present in IIAR 2-2014. It was inserted after 5.5.1.1 which required renumbering 5.5.5.1.3 & 5.5.1.4 to 5.5.1.4 & 5.5.1.5 5.5.1.2 Limited Charge Systems. When parts of a limited charge system are protected from overpressure by a pressure relief device, the design pressure of the protected parts need not exceed the set-pressure of the relief device. The set pressure of the relief device shall not exceed the design pressure of the protected parts.
5.5 System Design Pressure 5.5.1.4 Connecting to Existing Low-Pressure Equipment. Where new low-pressure side

equipment is connected to an existing system that was in operation prior to the adoption of this standard by the AHJ, the design pressure of the new low-pressure side portion of the system shall be permitted to equal the design pressure of the

existing low-pressure side.

5.5.1.5 Connecting to Existing Low-Pressure Equipment. Where new low-pressure side equipment is connected to an existing system that was in operation prior to the adoption of this Standard by the AHJ, the design pressure of the new low-pressure side portion of the system shall be permitted to equal the design pressure of the existing low-pressure side. All other requirements of this standard shall apply.
5.5 Purging 5.8 *Purging. Means shall be provided to remove air and other noncondensable gases from the

refrigeration system.

5.8 *Purging. Means shall be provided to remove air and other non-condensable gases from the refrigeration system. Discharge piping for purging systems that discharge to the atmosphere shall conform to sections 13.4 for support, 15.4.3 for materials, and 15.5.1.2 through 15.5.1.7 for termination.

 

EXCEPTION: A means for purging is not required for packaged vapor compression and absorption systems with refrigerant quantities that do not exceed 22 lbs. (10 kg.).

5.12 Service Provisions 5.12.4 Pressure Gauges. Where a pressure gauge is installed on the high side of the refrigeration

system, the gauge shall be capable of measuring and displaying not less than 120% of the

system design pressure.

16.4.2 Pressure Gauges. High Side Installation. Where a pressure gauge is installed on the high side of the refrigeration system, the gauge shall be capable of measuring and displaying not less than 120% of the system design pressure.

 

Note: Basically, it just moved.

5.12 Service Provisions 5.12.5 *Service Isolation Valves. Serviceable equipment shall have manual isolation valves.

 

EXCEPTION: Packaged systems and portions of built-up systems shall be permitted to have

pump-down arrangements that provide for the removal or isolation of ammonia for servicing

one or more devices in lieu of isolation valves.

5.12.4 *Service Isolation Valves. Serviceable equipment and control valves shall have manual isolation valves. Where multiple pieces of serviceable equipment are readily isolated by a single set of hand isolation valves, the use of a single set of valves meets the intent of this section.
5.12 Service Provisions Appears to be NEW

 

5.12.5 *Equipment Pumpout. Provisions for pumpout of equipment and control valves shall be provided for maintenance and service.
5.13 Testing 5.13.2 Ultimate Strength. Pressure-containing equipment shall comply with Sections 5.13.2.1 and 5.13.2.2.

 

EXCEPTION: The following shall be permitted to comply with Section 5.13.2.3 in lieu of

complying with this section:

1.      Pressure vessels.

2.      Piping, including valves, evaporators, condensers, and heating coils with ammonia as the working fluid, provided they are not part of the pressure vessel.

3.      Pressure gauges.

4.      Refrigerant pumps.

5.      Control mechanisms.

5.13.2 Ultimate Strength. Pressure-containing equipment shall comply with Sections 5.13.2.1 and 5.13.2.2.

 

EXCEPTIONS: The following shall be permitted to comply with Section 5.13.2.3 in lieu of complying with Sections 5.13.2.1 and 5.13.2.2.:

1.      Piping, including valves, evaporators, condensers, and heating coils with ammonia as the working fluid, if they are not part of a pressure vessel.

2.      Pressure gauges.

3.      Control mechanisms.

5.13 Testing 5.13.2.3 Equipment designed based on the exception to Section 5.13.2 shall be required to

comply with additional requirements in Chapter 8 through Chapter 16 and ASME B31.5, as applicable.

5.13.2.3 Equipment and piping designs based on the exception to Section 5.13.2 shall be required to comply with additional requirements in ASME B31.5 as applicable.
5.14 Signage, Labels, Pipe Marking, and Wind Indicators Appears to be NEW – addition required re-ordering the rest of the 5.14 sections 5.14.2 *NFPA 704 Placards. Buildings and facilities with refrigeration systems shall be provided with placards in accordance with NFPA 704. For equipment located outdoors, the placard shall display the following degrees of hazard: Health-3, Flammability-1, Instability-0. For equipment located indoors, the placard shall display the following degrees of hazard: Health-3, Flammability-3, Instability-0
5.17 General Safety Requirements Appears to be NEW – addition required re-ordering the rest of the 5.17 sections *Vessel Pumpdown Capacity. Liquid ammonia shall not occupy a vessel at a volume large enough to create a risk of hydrostatic overpressure unless the vessel is protected by a hydrostatic pressure relief device.

 

Note: A.5.17.4 The maximum volume of liquid in vessels has traditionally been considered 90% at a temperature of 90°F. Calculations can be done to determine other levels and worst-case temperatures.

5.17.5 Used Equipment This appears to have moved from Section 6.8 5.17.10 Electrical Safety – Electrical equipment and wiring shall be installed in accordance with the Electrical Code.
6 Machinery Rooms 6.3.3.2 Manually operated isolation valves identified as being part of the system emergency shutdown procedure shall be directly operable from the floor or chain operated from a permanent work surface. Emergency valve identification shall comply with Section 5.14.5 6.3.3.2 Manually operated isolation valves identified as being part of the system emergency shutdown procedure shall be directly operable from the floor or chain operated from a permanent work surface. Emergency valve identification shall comply with Section 5.14.4
6 Machinery Rooms 6.6.3 Pipe Marking. Piping shall be marked as required by Section 5.14.5. 6.6.3 Pipe Marking. Piping shall be marked as required by Section 5.14.6.
6 Machinery Rooms 6.7.1 General. Each machinery room shall have access to a minimum of two eyewash/safety shower units, one located inside the machinery room and one located outside of the machinery room, each meeting the requirements in Section 6.7.3. Additional eyewash/safety shower units shall be installed such that the path of travel in the machinery room is no more than 55 ft to an eyewash/safety shower unit. 6.7.1 General. Each machinery room shall have access to a minimum of two eyewash/safety shower units, one located inside the machinery room and one located outside of the machinery room, each meeting the requirements in Section 6.7.3.
6 Machinery Rooms 6.7.2 – Path of Travel. The path of travel within the machinery room to at least one eyewash/safety shower unit shall be unobstructed and shall not include intervening doors. 6.7.2 Path of Travel. The path of travel within the machinery room to at least one eyewash/safety shower unit shall be unobstructed and shall not include intervening doors. Additional eyewash/safety shower units shall be installed such that the path of travel in the machinery room is no more than 55 ft to an eyewash/safety shower unit. The path of travel to at least one eyewash/safety shower unit located outside of the machinery room shall be within 55 ft. of the principle machinery room door. The path of travel shall be unobstructed and shall not include intervening doors.
6 Machinery Rooms 6.8.1 General. Electrical equipment and wiring shall be installed in accordance with the Electrical Code. 6.8.1 Hazardous (Classified) Locations. Electrical equipment and wiring shall be installed in accordance with the Electrical Code. Machinery rooms shall be designated as Unclassified Locations, as described in the Electrical Code, where the machinery room is provided with emergency ventilation in accordance with Section 6.14.7 and ammonia detection in accordance with Section 6.13.

 

A machinery room not provided with emergency ventilation shall be designated as not less than a Class I, Division 2, Group D Hazardous (Classified) Location, and electrical equipment installed in the machinery room shall be designed to meet this requirement.

6 Machinery Rooms 6.8.2 Machinery rooms shall be designated Ordinary Locations, as described in the Electrical Code, where the machinery room is provided with emergency ventilation in accordance with Section 6.14.7 and ammonia detection in

accordance with Section 6.13.

Machinery rooms not provided with emergency ventilation shall be designated as not less than a Class I, Division 2, Group D Hazardous (Classified) Location, and electrical equipment installed in the machinery room shall be designed to meet this requirement.

6.8.3 Design Documents. Electrical design documents shall indicate whether the machinery room is designated as an Ordinary Location or as a Hazardous (Classified) Location. Where the machinery room is designated as a Hazardous (Classified) Location, the Class, Division, and Group of the electrical classification, as required by the Electrical Code, shall be indicated in the documentation.
6 Machinery Rooms 6.8.2 Design Documents. Electrical design documents shall indicate whether the machinery room is designated as an Ordinary Location or as a Hazardous (Classified) Location. Where the machinery room is designated as a Hazardous (Classified) Location, the Class, Division, and Group of the electrical classification, as required by the Electrical Code, shall be indicated in the documentation. * Moved up one section
6.14 Ventilation “6.14.3.1 Mechanical exhaust ventilation systems shall be automatically activated by ammonia leak detection in accordance with Section 6.13 or temperature sensors and shall be manually operable.” Appears to have been removed. These requirements are already elsewhere in the document so there is no real effect other than requiring 6.14.3.2-6 to be renumbered to 6.14.3.1-5.
6 Machinery Rooms 6.15.1 *NFPA 704 Placards. Buildings and facilities with refrigeration systems shall be provided with placards accordance with NFPA 704 and the Mechanical Code. 6.15.1 NFPA 704 Placards. A NFPA 704 placard shall be provided in accordance with Section 5.14.2 on or next to all doors through which a person can enter the machinery room.
6 Machinery Rooms Appears to be NEW – Just a reminder about earlier requirements

 

6.15.4 Emergency Control Switch Signage. Signage shall be provided near the emergency stop and emergency ventilation control switches as described in section 6.12.
7 Equipment in Non-Machinery Rooms 7.2.7 Illumination of Equipment Areas. See Section 5.17.6. 7.2.7 Illumination of Equipment Areas. See Section 5.17.7.
7 Equipment in Non-Machinery Rooms Appears to be NEW 7.2.10 Electrical Classification. Areas in compliance with 7.2.1 through 7.2.9 shall be designated as Unclassified electrical locations as described in the Electrical Code, unless a different electrical classification is required by in the space other than for the ammonia refrigeration system.
7 Equipment in Non-Machinery Rooms 7.3.2 Outdoor Systems. Where a refrigeration system or equipment is located outdoors more than 20 ft (6.1 m) from building entrances and exits and is enclosed by a penthouse, lean-to, or other open structure, natural ventilation shall be provided in accordance with this Section 7.3.2 or

mechanical ventilation shall be provided in accordance with Section 6.14 and Section 7.3.1.2.

7.3.2 Outdoor Systems. Outdoor systems include those that comply with Section 4.2.2. For outdoor systems, natural ventilation shall be provided in accordance with this Section or mechanical ventilation shall be provided in accordance with Section 6.14 and Section 7.3.1.
8 Compressors 8.2.2 *Positive-Displacement Compressor Protection. Where a stop valve is provided in the discharge connection, a positive-displacement compressor shall be equipped with a pressure relief device to prevent the discharge pressure from increasing to more than 10% above the lowest maximum allowable working pressure of the compressor or any other equipment located in the discharge line between the compressor and the stop valve, or in accordance with Section 15.3.7, whichever is larger. 8.2.2 *Positive-Displacement Compressor Protection. Where a stop valve is provided in the discharge connection, a positive-displacement compressor shall be equipped with a pressure relief device to prevent the discharge pressure from increasing to more than 10% above the lowest maximum allowable working pressure of the compressor or any other equipment located in the discharge line between the compressor and the stop valve, or in accordance with Section 15.3.8, whichever is larger.
8 Compressors 8.2.6 Rotation Arrow. If rotation is one direction only, a rotation arrow shall be cast in or permanently attached to the compressor frame using an attached label or plate or equivalent means. 8.2.6 Rotation Arrow. If rotation is one direction only, a rotation arrow shall be cast in or permanently attached to the compressor.
10.4 Shell-and-Tube Condensers 10.4.1.5 Where the secondary coolant inlet and outlet piping of shell-and-tube condensers can be automatically isolated, protection from hydrostatic overpressure shall be in accordance with Section 15.6. 10.4.1.5 Where the secondary coolant inlet and outlet piping of shell-and-tube condensers can be automatically isolated, protection from hydrostatic overpressure shall be in accordance with the Mechanical Code.
10.4 Shell-and-Tube Condensers 10.4.2 Procedures/Testing. Shell-and-tube condensers shall be strength tested to a minimum of 1.1

times the design pressure, subsequently leak tested, and proven tight at a pressure not less than

design pressure by the manufacturer.

10.4.2 Procedures/Testing. Shell-and-tube condensers shall be strength tested to a minimum of 1.1 times the design pressure when they are not manufactured as a pressure vessel or shall be pressure tested in accordance with ASME B&PVC, Section VIII, Division 1 when they are manufactured as a pressure vessel. In either case, they shall be subsequently leak tested, and proven tight at a pressure not less than design pressure by the manufacturer
10.5 Plate Heat Exchange Condensers 10.5.1.5 Where the nonrefrigerant process fluid inlet and outlet lines of plate packs can be automatically isolated, they shall be protected from hydrostatic overpressure in

accordance with Section 15.6.

10.5.1.5 Where the non-refrigerant process fluid inlet and outlet lines of plate packs can be automatically isolated, they shall be protected from hydrostatic overpressure in accordance with the Mechanical Code.
10.5 Plate Heat Exchange Condensers 10.5.2 Procedures/Testing. Plate heat exchanger condensers shall be strength tested to a minimum of 1.1 times the design pressure, subsequently leak tested, and proven tight at a pressure not less than design pressure by the manufacturer. 10.5.2 Procedures/Testing. Plate heat exchanger condensers shall be strength tested to a minimum of 1.1 times the design pressure when they are not manufactured as a pressure vessel or shall be pressure tested in accordance with ASME B&PVC, Section VIII, Division 1 when they are manufactured as a pressure vessel. In either case, they shall be subsequently leak tested, and proven tight at a pressure not less than design pressure by the manufacturer.
10.6 Double- Pipe Condensers 10.6.1.5 Where the secondary coolant inlet and outlet piping of double-pipe condensers can

be automatically isolated, they shall be protected from hydrostatic overpressure in

accordance with Section 15.6.

10.6.1.5 Where the secondary-coolant inlet and outlet piping of double-pipe condensers can be automatically isolated, they shall be protected from hydrostatic overpressure in accordance with the Mechanical Code.
11.3 Shell-and-Tube Evaporators Appears to be NEW 11.3.1.1.2 Ultimate strength shall be in accordance with section 5.13.2.
11.3 Shell-and-Tube Evaporators (Ammonia in Shell) 11.3.1.1.2 Pressure vessels coupled to shell-and-tube evaporators shall comply with

Chapter 12.

 

Note: Renumbered do to Ultimate Strength addition

11.3.1.1.3 Pressure vessels coupled to shell-and-tube evaporators shall comply with Chapter 12.
11.3 Shell-and-Tube Evaporators (Ammonia in Tubes) 11.3.2.1 Design 11.3.3 Design
11.3 Shell-and-Tube Evaporators (Ammonia in Tubes) 11.3.2.1.1 Minimum design pressure shall be in accordance with Section 5.5. 11.3.3.1.1 Minimum design pressure shall be in accordance with Section 5.5.
11.3 Shell-and-Tube Evaporators (Ammonia in Tubes) Appears to be NEW 11.3.3.1.2 Ultimate strength shall be in accordance with section 5.13.2.
11.3 Shell-and-Tube Evaporators (Ammonia in Tubes) 11.3.2.1.2 Pressure vessels coupled to shell-and-tube evaporators with ammonia in the tubes shall comply with Chapter 12. 11.3.3.1.3 Pressure vessels coupled to shell-and-tube evaporators with ammonia in the tubes shall comply with Chapter 12.
11.3 Shell-and-Tube Evaporators (Ammonia in Tubes) 11.3.2.1.3 Where the tube-side inlet and outlet lines of shell-and-tube evaporators with ammonia in tubes can be automatically isolated, the tube side shall be protected from hydrostatic overpressure in accordance with Section 15.6. 11.3.3.1.4 Where the tube-side inlet and outlet lines of shell-and-tube evaporators with ammonia in tubes can be automatically isolated, the tube side shall be protected from hydrostatic overpressure in accordance with Section 15.6.
11.3 Shell-and-Tube Evaporators (Ammonia in Tubes) 11.3.2.1.4 The tube side shall comply with ASME B31.5 or ASME B&PVC, Section VIII, Division 1. 11.3.3.1.5 The tube side shall comply with ASME B31.5 or ASME B&PVC, Section VIII, Division 1.
11.3 Shell-and-Tube Evaporators (Ammonia in Tubes) 11.3.2.2 Procedures/Testing. Shell-and-tube evaporators shall be strength tested to a minimum of 1.1 times the design pressure, subsequently leak tested, and proven tight at a pressure not less than design pressure by the manufacturer. 11.3.3.2 Procedures/Testing. Shell-and-tube evaporators shall be strength tested to a minimum of 1.1 times the design pressure when they are not manufactured as a pressure vessel or shall be pressure tested in accordance with ASME B&PVC, Section VIII, Division 1 when they are manufactured as a pressure vessel. In either case, they shall be subsequently leak tested, and proven tight at a pressure not less than design pressure by the manufacturer.
11.3 Shell-and-Tube Evaporators (Ammonia in Tubes) 11.3.2.3 Equipment Identification… 11.3.3.3 Equipment Identification…
11.3 Shell-and-Tube Evaporators (Ammonia in Tubes) 11.3.2.4 Installation Considerations. Where design permits servicing of evaporator tubes at their installed location, clearance shall be provided as necessary to accommodate maintenance and replacement. 11.3.3.4 Installation Considerations
11.3 Shell-and-Tube Evaporators (Ammonia in Tubes) Requirement given its own number 11.3.3.4.1 Where design permits servicing of evaporator tubes at their installed location, clearance shall be provided as necessary to accommodate maintenance and replacement.
11.4 Plate Heat Exchanger Evaporators 11.4.1.5 Where the nonrefrigerant process fluid inlet and outlet lines of plate packs can be isolated, they shall be protected from hydrostatic overpressure in accordance with Section 15.6 on the process side. 11.4.1.5 Where the non-refrigerant process fluid inlet and outlet lines of plate packs can be isolated, they shall be protected from hydrostatic overpressure in accordance with the Mechanical Code on the process side.
11.4 Plate Heat Exchanger Evaporators 11.4.2 Procedures/Testing. Plate heat exchanger evaporators shall be strength tested to a minimum

of 1.1 times the design pressure, subsequently leak tested, and proven tight at a pressure not

less than design pressure by the manufacturer.

11.4.2 Procedures/Testing. Plate heat exchanger evaporators shall be strength tested to a minimum of 1.1 times the design pressure when they are not manufactured as a pressure vessel or shall be pressure tested in accordance with ASME B&PVC, Section VIII, Division 1 when they are manufactured as a pressure vessel. In either case, they shall be subsequently leak tested, and proven tight at a pressure not less than design pressure by the manufacturer.
11.5 Scraped (Swept) Surface Heat Exchangers 11.5.2 Procedures/Testing. Scraped (swept) surface heat exchangers shall be tested in accordance with ASME B&PVC, Section VIII, Division 1, but at a minimum, shall be strength tested to a minimum of 1.1 times the design pressure, subsequently leak tested, and proven tight at a

pressure not less than design pressure by the manufacturer.

11.5.2 Procedures/Testing. Scraped (swept) surface heat exchangers shall be strength tested to a minimum of 1.1 times the design pressure when they are not manufactured as a pressure vessel or shall be pressure tested in accordance with ASME B&PVC, Section VIII, Division 1 when they are manufactured as a pressure vessel. In either case, they shall be subsequently leak tested, and proven tight at a pressure not less than design pressure by the manufacturer.
11.6 Jacketed Tanks. 11.6.2 Procedures/Testing. Jacketed tanks shall be tested in accordance with ASME B&PVC, Section VIII, Division 1, but at a minimum, shall be strength tested to a minimum of 1.1 times the design pressure, subsequently leak tested, and proven tight at a pressure not less than

design pressure by the manufacturer.

11.6.2 Procedures/Testing. Jacketed tanks shall be strength tested to a minimum of 1.1 times the design pressure when they are not manufactured as a pressure vessel or shall be pressure tested in accordance with ASME B&PVC, Section VIII, Division 1 when they are manufactured as a pressure vessel. In either case, they shall be subsequently leak tested, and proven tight at a pressure not less than design pressure by the manufacturer.
12. Pressure Vessels 12.2.6 *In applications where pressure vessels are subject to external corrosion, the vessels shall be designed and specified with a minimum of 1/16 in. (0.16 cm) corrosion allowance. The external corrosion allowance is in addition to the minimum vessel thickness as required by

ASME B&PVC, Section VIII, Division 1.

12.2.6 * In applications where vessels are subject to external corrosion as determined by the owner or owner’s designated agent, suitable means shall be used to address vessel protection.
14.1 General (Packaged Systems) 14.1.3 *‍Packaged systems shall be ventilated based on the intended operation of the equipment, as specified by the manufacturer. In addition, emergency mechanical ventilation shall be provided where required by any of the following:

 

1. Package systems located in machinery rooms shall be included as machinery room equipment. Emergency ventilation for machinery rooms shall be in accordance with Section 6.14.

2. Package systems located indoors and outside of a machinery room in accordance with Section 4.2.3, Item 5, shall comply with Section 7.3.1.

3. Package systems located outside that are designed for human occupancy shall comply with Section 7.3.2. Package systems located outside that are not designed for human occupancy shall not require ventilation.

14.5 Ventilation. Ventilation for packaged system shall comply with the following:

1.      Packaged systems that are required to be located in a machinery room as determined in Chapter 4 shall comply with Section 6.14.

2.      Packaged systems located indoors and permitted to be located in areas other than a machinery room in accordance with Section 4.2.3., item 5, shall comply with section 7.3.1.

1.      3. Packaged systems located outdoors shall comply with Section 7.3.2.

 

Note: Moved and condensed a bit

14.1 General (Packaged Systems) 14.1.4 Equipment and devices incorporated into packaged systems shall comply with the applicable

provisions of Chapter 8 through Chapter 17.

14.1.3 Equipment and devices incorporated into packaged systems shall comply with the applicable provisions of Chapter 8 through Chapter 17.
14.1 Design (Packaged Systems) 14.2.6 *‍Access shall be provided for manually operated valves. Isolation valves identified as being

part of system emergency shutdown procedures shall comply with Section 6.3.3.1 and valve

tagging shall comply with Section 5.14.3.

14.2.6 *Access shall be provided for manually operated valves. Isolation valves identified as being part of system emergency shutdown procedures shall comply with Section 6.3.3.1 and valve tagging shall comply with Section 5.14.4.
14.1 Design (Packaged Systems) 14.2.7 Pipes shall be marked in accordance with Section 5.14.5. 14.2.7 Pipes shall be marked in accordance with Section 5.14.6.
14.1 Design (Packaged Systems) 14.2.8 Equipment shall be labeled in accordance with Section 5.14.2. 14.2.8 Equipment shall be labeled in accordance with Section 5.14.3.
14.1 Alarms (Packaged Systems) 2.      Package systems located indoors and outside of a machinery room, as permitted by Section 4.2, shall be provided with Level 2 detection and alarms in accordance with Section 17.7.2. 3.      Packaged systems located indoors and permitted to be located in areas other than a machinery room, in accordance with Section 4.2.3, shall be provided with detection and alarms complying with Section 7.2.3 or 7.3.1.
14.1 Alarms (Packaged Systems) 3.      Package systems located outdoors that are not  intended for human occupancy shall not require ammonia detection or alarms. 4.      Packaged systems located outdoors that comply with the free-aperture requirements of Section 7.3.2 shall not require ammonia detection or alarms.

 

5.      Packaged systems located outdoors that do not comply with the free-aperture requirements of section 7.3.2 shall be provided with detection and alarms complying with section 6.13 or if permitted by section 4.2.3 shall be provided with detection and alarms complying with Section 7.3.1

15 Overpressure Protection Devices VARIOUS Note: This whole section was renumbered and partially reorganized. I’m limiting this section to the new or changed requirements.
15.1.2 Overpressure Protection Devices General Appears to be NEW 15.1.2 It is permitted to protect system piping and equipment from overpressure through unobstructed piping that is connected to pressure vessels equipped with overpressure protection. Vessels and equipment that relieve into the system must comply with sections 15.3.7 and 15.3.8.
15.1.3 Overpressure Protection Devices General Appears to be NEW 15.1.3 Rupture discs are not permitted as the only means of pressure relief. They are permitted to be used in series with pressure relief valves and in accordance with 15.2.6.
15.1.4 Overpressure Protection Devices General Appears to be NEW 15.1.4 Fusible plugs are not permitted for use as pressure relief devices.
15.2.1 Pressure Relief Devices Appears to be NEW 15.2.1 Pressure relief devices shall be direct-pressure actuated or pilot operated. Pilot-operated pressure relief valves shall be self-actuated, and the main valve shall automatically open at the set pressure. If the pilot valve fails, the main valve shall discharge at its full-rated capacity.
15.2.3 Pressure Relief Devices Appears to be NEW

 

15.2.3 – Pressure relief devices shall not use cast iron seats or discs.
15.3 ASME pressure vessels and Non-ASME equipment 15.2.7.1 …Resetting of a pressure relief device shall be performed by the manufacturer or a company holding a valid testing certificate for this work. 15.2.8.1 – …Calibration and set pressure adjustments to pressure relief devices shall be performed by the relief device manufacturer or a company holding a certification for this work.
15.3 ASME pressure vessels and Non-ASME equipment 15.3.1 Pressure vessels and other types of equipment built and stamped in accordance with ASME B&PVC, Section VIII, Division 1, shall be provided with certified pressure relief protection. 15.3.1.1 Pressure vessels and equipment built and stamped in accordance with ASME B&PVC, Section VIII, shall be provided with pressure relief protection in accordance with the ASME B&PVC, Section VIII, Division 1
15.3 ASME pressure vessels and Non-ASME equipment 15.3.2 Pressure vessels intended to operate completely filled with liquid ammonia and capable of being isolated by stop valves from other portions of a refrigeration system shall be protected with a certified hydrostatic service relief device as required by ASME B&PVC Section VIII, Division 1. Hydrostatic overpressure relief shall comply with Section 15.6. 15.3.1.2 – *Refrigerant containing equipment not built in accordance ASME BPVC, Section VIII, and having any single ammonia-containing section exceeding 0.5 ft3 of internal volume shall be provided with pressure relief protection that is in accordance with the ASME B&PVC Section VIII, Division 1.

 

EXCEPTION: The following types of equipment are not required to have overpressure protection unless it is required by other sections of this standard:

1.      Compressors, pumps, controls, headers, piping, evaporator coils, and condenser coils

2.      Equipment built in accordance with ASME B31.5

3.      Equipment listed by a nationally recognized testing laboratory

15.3 ASME pressure vessels and Non-ASME equipment Appears to be NEW

 

15.3.2 – Tube and Fin or microchannel evaporator and condenser coils that are located within 18” of a heating source and capable of being isolated shall be fitted with a pressure relief device that discharges according to the provisions of this chapter. The pressure relief device shall be connected at the highest possible location of the heat exchanger or piping between the heat exchanger and its manual isolation valves.

 

EXCEPTION: Pressure relief protection is not required on tube and fin or microchannel evaporator and condenser coils that are designed for 110% of ammonia’s saturation pressure when exposed to the maximum heating source temperature.

15.3 ASME pressure vessels and Non-ASME equipment 15.3.8 *‍Where combustible material is stored within 20 ft (6.1 m) of a pressure vessel that is outside of a machinery room, the relief device capacity factor, f, in the formulas shall be increased to f = 1.25 (f = 0.1). 15.3.9 *Where combustible material is stored or installed within 20 ft (6.1 m) of a pressure vessel, the relief device capacity factor, f, in the formulas shall be increased to f = 1.25 (f = 0.1).
15.4 Pressure Relief Device Piping 15.4.5 – Where piping in the system and other equipment required to comply with this section could contain liquid ammonia that can be isolated from the system during operation or service, the installation shall comply with Section 15.6 for protection against overpressure due to thermal hydrostatic expansion. * Removed as new items elsewhere address equipment specifically and existing items makes this redundant.
15.4 Pressure Relief Device Piping 15.4.7 – Atmospheric relief piping shall be used only for relieving vapor from refrigerant relief devices or fusible plugs. Relief piping shall not be used to relieve discharge from hydrostatic overpressure relief devices or any other fluid discharges, such as secondary coolant or oil. 15.4.6 – Atmospheric relief piping shall be used only for relieving vapor from refrigerant relief devices. Different refrigerants shall not be vented into a common relief piping system unless the refrigerants are included in a blend that is recognized by ASHRAE Standard 34. Relief piping shall not be used to relieve discharge from hydrostatic overpressure relief devices or any other fluid discharges, such as secondary coolant or oil.
15.5 Discharge from Pressure Relief Devices Appears to be NEW

 

15.5.1.7 – Piping discharging to atmosphere shall have a provision to mitigate the entry of rain or snow into the discharge piping.
15.6 Equipment and Piping Hydrostatic Overpressure Protection Appears to be NEW

 

15.6.1 *Protection Required. Protection against overpressure due to thermal hydrostatic expansion

of trapped liquid ammonia shall be provided for equipment and piping sections that can be

isolated and can trap liquid ammonia in an isolated section in any of the following situations: …5. During the shipping of any pre-charged equipment.

16. Instrumentation and Controls 16.1.2 Operating Parameter Monitoring. Instruments and controls shall be provided to indicate operating parameters of the refrigeration system and equipment and provide the ability to manually or automatically control the starting, stopping, and operation of the system or equipment. The instruments and controls shall provide notice if the system’s critical operating

parameters, as determined by the owner or operator, have been exceeded.

16.1.2 *Operating Parameter Monitoring. Instrumentation and controls shall be provided to indicate operating parameters of the refrigeration system and equipment and provide the ability to manually or automatically control the starting, stopping, and operation of the system or equipment. The instruments and controls shall provide notice to an owner’s representative if the system’s critical operating parameters, as determined by the owner or operator, have been exceeded. Monitoring of parameters is permitted to be automatic or manual or a combination of both methods.
16. Instrumentation and Controls 16.1.7 Ultimate Strength. The pressure-containing envelope maximum allowable working pressure

of instruments and visual liquid level indicators shall be equal to or greater than the design pressure of the system or subsystem in which they are installed.

16.1.7 MAWP. The pressure-containing envelope maximum allowable working pressure of instruments and visual liquid level indicators shall be equal to or greater than the design pressure of the system or subsystem in which they are installed.
16.4 Pressure Gauges Appears to be NEW Pressure Gauges. Pressure gages used for visually determining system pressures shall comply with this section.
16.4 Pressure Gauges Appears to be NEW 16.4.1 Design and selection. Pressure gauges shall be designed or selected in accordance with one or more of the following:

1.      Comply with the ultimate strength requirements in Section 5.13.2.

2.      Have a documented successful performance history for devices in comparable service conditions.

3.      Use a performance-based pressure-containment design substantiated by either proof tests as described in ASME B&PVC, Section VIII, Division 1, Section UG-101, or an experimental stress analysis.

1.      Is listed individually or as part of an assembly or a system.

16.4 Pressure Gauges Appears to be NEW location 16.4.2 High Side Installation. Where a pressure gauge is installed on the high side of the refrigeration system, the gauge shall be capable of measuring and displaying not less than 120% of the system design pressure.
17.7.2 Ammonia Detection * The “level 2” Ammonia Detection was defined in this section. The “level 2” section has been completely moved to an informative appendix and the “level 3” section has been renumbered to take its place in the normative text.
17.7.2 Ammonia Detection “…For machinery rooms, additional audible and visual alarms shall be located outside of each entrance to the machinery room.” Text Removed – likely because it simply duplicated the existing Machinery Room requirements.
18 Absorption Systems Entirely new section See the document

 

IIAR 7-2019 Update

It’s been coming for a while now and yesterday it became official:

Introducing: ANSI/IIAR 7-2019Developing Operating Procedures for Closed-Circuit Ammonia Refrigeration Systems

In 2013, the first issue of IIAR 7 replaced the operations information contained in IIAR Bulletin No. 110, Guidelines for Start-Up, Inspection, and Maintenance of Ammonia Mechanical Refrigerating Systems.

This standard was first approved as an American National Standard by the American National Standards Institute (ANSI) in August 2013. ANSI requires reaffirmation or revision for periodic maintenance requirements of existing standards every five years. Work began on periodic maintenance of this standard in February 2017 and was completed in April 2019.

This standard defines the minimum requirements for developing operating procedures for closed-circuit ammonia refrigeration systems. Informative Appendix A was added to provide explanatory information related to provisions in the standard.

 

A little over two years ago, the SOP templates were updated to include all the requirements of IIAR 7 2013. That was a pretty large undertaking, but if you already made those changes, it looks like you are in good shape! I’ve reviewed the new IIAR 7 and it turns out we only need to make one substantive change to programs using the current templates.

 

What’s the requirement / change? 

The 2013 version required a visual inspection of hoses when they were used. This was a pretty minor requirement. The newer version requires that procedures include “Steps to inspect hoses and fittings visually to make sure they are suitable for ammonia refrigeration service”  whenever you Transfer (such as in pump-down) or Charge ammonia. To address this issue, I’ve modified the ROSOP-LEO and Permit form to include an explicit check and a reference to the “ITPMR-AHT-365 – Ammonia Transfer Hose Annual ITPM Record” we recently added due to IIAR 6.

So, if you’ve already updated your system for IIAR 6 compliance, then all you need to do is update your LEO procedure and Permit. If you haven’t updated your system for IIAR 6 compliance, then you need to integrate the new ITPMR as well as make plans to address the entirety of IIAR 6.

Note: Overall the 2019 IIAR 7 is much simpler than the 2013  version. It’s moved a lot of stuff to informative appendices which removes most of my complaints about it. Unfortunately they renumbered* just about every single requirement in the standard. This meant I had to completely renumber / rewrite my standalone SOP audit template. The good news is that the IIAR7-2019 version of that audit was reduced from 110 pages to 87. Of those remaining 87 pages of questions, 60 pages are due to IIAR 7.

* This was not an attempt to drive me closer to insanity, but an attempt to harmonize numbering systems between all the IIAR standards. I know this because I actually asked the IIAR about this. Thankfully, Tony Lundell has a good sense of humor.